Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Antimony selenide (Sb2Se3) is a promising material for solar energy conversion due to its low toxicity, high stability, and excellent light absorption capabilities. However, Sb2Se3 films produced via physical vapor deposition often exhibit Se-deficient surfaces, which result in a high carrier recombination and poor device performance. The conventional selenization process was used to address selenium loss in Sb2Se3 solar cells with a substrate configuration. However, this traditional selenization method is not suitable for superstrated Sb2Se3 devices with the window layer buried underneath the Sb2Se3 light absorber layer, as it can lead to significant diffusion of the window layer material into Sb2Se3 and damage the device. In this work, we have demonstrated a rapid thermal selenization (RTS) technique that can effectively selenize the Sb2Se3 absorber layer while preventing the S diffusion from the buried CdS window layer into the Sb2Se3 absorber layer. The RTS technique significantly reduces carrier recombination loss and carrier transport resistance and can achieve the highest efficiency of 8.25%. Overall, the RTS method presents a promising approach for enhancing low-dimensional chalcogenide thin films for emerging superstrate chalcogenide solar cell applications.more » « lessFree, publicly-accessible full text available March 5, 2026
- 
            High entropy oxide nanoparticles (HEO NPs) with multiple component elements possess improved stability and multiple uses for functional applications, including catalysis, data memory, and energy storage. However, the synthesis of homogenous HEO NPs containing five or more immiscible elements with a single-phase structure is still a great challenge due to the strict synthetic conditions. In particular, several synthesis methods of HEO NPs require extremely high temperatures. In this study, we demonstrate a low cost, facile, and effective method to synthesize three- to eight-element HEO nanoparticles by a combination of electrospinning and low-temperature ambient annealing. HEO NPs were generated by annealing nanofibers at 330 °C for 30 minutes under air conditions. The average size of the HEO nanoparticles was ∼30 nm and homogenous element distribution was obtained from post-electrospinning thermal decomposition. The synthesized HEO NPs exhibited magnetic properties with the highest saturation magnetization at 9.588 emu g −1 and the highest coercivity at 147.175 Oe for HEO NPs with four magnetic elements while integrating more nonmagnetic elements will suppress the magnetic response. This electrospun and low-temperature annealing method provides an easy and flexible design for nanoparticle composition and economic processing pathway, which offers a cost- and energy-effective, and high throughput entropy nanoparticle synthesis on a large scale.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
